6.5.4 Grading and Degree Requirements

1. Double Honours Programmes

The degree classification for Computing Degree (Honours) will be based on CAP calculated from 140 MCs: 88 MCs B.Comp. Programme Requirements, 32 MCs Common Modules, 20 MCs University Level Requirements (ULR).

The degree classification for Science Degree (Honours) majoring in Mathematics will be based on CAP calculated from 133 MCs: 17 MCs Faculty Requirement Modules, 64 MCs Mathematics Modules, 32 MCs Common Modules, 20 MCs (ULR).

The degree classification for Science Degree (Honours) majoring in Applied Mathematics will be based on CAP calculated from 137 MCs: 17 MCs Faculty Requirement Modules, 68 MCs Mathematics Modules, 32 MCs Common Modules, 20 MCs ULR.

2. B.Comp. (Hons.) – B.Sc. in Mathematics: Single Honours Programme

The degree classification for Computing Degree (Honours) will be based on CAP calculated from 140 MCs: 104 MCs B.Comp. Programme Requirements, 16 MCs Common Modules, 20 MCs ULR.

The degree classification for Science Degree (non-Honours) majoring in Mathematics will be based on CAP calculated from 93 MCs: 13 MCs Faculty Requirement Modules, 44 MCs Mathematics Modules, 16 MCs Common Modules, 20 MCs ULR.

3. B.Comp. (Hons.) - B.Sc. in Applied Mathematics: Single Honours Programme

The degree classification for Computing Degree (Honours) will be based on CAP calculated from 140 MCs: 100 MCs B.Comp. Programme Requirements, 20 MCs Common Modules, 20 MCs ULR.

The degree classification for Science Degree (non-Honours) majoring in Applied Mathematics will be based on CAP calculated from 97 MCs: 13 MCs Faculty Requirement Modules, 44 MCs Mathematics Modules, 20 MCs Common Modules, 20 MCs ULR.

The list of common modules is given as follows:

<table>
<thead>
<tr>
<th>COMMON MODULES TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODULE CODE</td>
</tr>
<tr>
<td>CS1231</td>
</tr>
</tbody>
</table>
Module Table 1

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>MCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA1101R</td>
<td>Linear Algebra I</td>
<td>4</td>
</tr>
<tr>
<td>MA1102R</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>ST2131/MA2216</td>
<td>Probability</td>
<td>4</td>
</tr>
<tr>
<td>CS3230</td>
<td>Design and Analysis of Algorithms</td>
<td>4</td>
</tr>
<tr>
<td>XFC4101/MA4199</td>
<td>Integrated Honours Project</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

Common Modules Table 2

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>MCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS3234</td>
<td>Logic and Formal Systems</td>
<td>4</td>
</tr>
<tr>
<td>CS4232</td>
<td>Theory of Computation</td>
<td>4</td>
</tr>
<tr>
<td>CS4234</td>
<td>Optimisation Algorithms</td>
<td>4</td>
</tr>
<tr>
<td>CS4236</td>
<td>Cryptography Theory and Practice</td>
<td>4</td>
</tr>
<tr>
<td>CS5230</td>
<td>Computational Complexity</td>
<td>4</td>
</tr>
<tr>
<td>CS5237</td>
<td>Computational Geometry and Applications</td>
<td>4</td>
</tr>
<tr>
<td>CS6209</td>
<td>Topics in Cryptography</td>
<td>4</td>
</tr>
</tbody>
</table>